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Effects of electron scatterings on thermal 
conductivity of thin metal films 
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In the framework of the statistical conduction models for polycrystalline and mono- 
crystalline metal films, the thermal conductivity due to electron transport is calculated 
under the further assumption that the electron relaxation time in the bulk material 
depends on electron energy. It is shown that the same function describes the size effect 
in thermal and electrical conductivities, and that the Wiedemann-Franz law holds for 
any electron scattering in thin metal films. 

1. Introduction 
Although it is well known [1] that the transport of 
heat plays an important role in determining the 
kinetics of nucleation and growth of thin films, 
very few workers [1-5] have proposed theoretical 
expressions for the thermal conductivity of thin 
films and none of these took into account the 
effect of electronic scattering at grain boundaries 
(it is suggested in [5]). Moreover, an extended 
knowledge of the variations in thermal conduc- 
tivity of superimposed layers would be convenient 
for solving problems involving many efficient 
multilayer insulations used, for instance, for the 
storage of cryogenic propellants. 

In view of these basic and technical interests, 
we propose in this paper an analysis of the thermal 
conductivity of thin metal films, starting from the 
models [6, 7] which have recently been presented 
for representing the effects of simultaneous back- 
ground, external-surface and grain-boundary scat- 
terings of conduction electrons. 

2. Theoretical study 
The general expression for the current density,Jx, 
and heat flux, s in a thin metal film subjected 
to an electric field, Ex, and a temperature gradient, 
OT/Ox, in the x-direction are [2] 
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and 

J= = - 2e ~v=d3v  (1) 

7/x= 2 ( h f f  ~';(e--eF)v, cdav, (2) 

respectively, where e is the absolute electron charge, 
m is the electron mass, Vx is the x-component of 
electron velocity v, e is the electron energy, eF is 
the Fermi energy, ~ is the deviation from the 
equilibrium distribution function, ~'-o, and h is 
Planck's constant. 

obeys the Boltzmann equation for charge 
transport, i.e., in polar co-ordinates (r, 0, ~), [2] 

e .~.~ ~OO[E , 1 e--eF~T], 
= mrtV)--~v~['--L x + e T ~x] (3) 

where 7(0) is the electron relaxation time in the 
film and E" is the effective electric field, given 
by [2] 

E L = E= 4 1 ~er 
e 0x (4) 

In the tridimensional [8] and bidimensional [7] 
conduction models which describe electronic con- 
duction in polycrystalline and monocrystalline 
films, respectively, the electron mean free paths, 
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3`p(0) and 3`m(0), respectively, are given by [8, 7] 

[3`p(0)]  -1 : 3`01 + C2Dg 1 In 1 and 
t 

with (5) 
and 

[3 `m(0) ]_  1 = 3`01 .~ C2D~11 n 1 
t 

+[d 11nl co 11n ]cos 01, 
(6) 

where 3̀ 0 is the bulk mean free path, Dg is the 
average grain diameter (Dg is a constant for poly- 
crystalline films; Dg ~> d for monocrystalline films), 
d is the film thickness, p is the electronic specular 
reflection coefficient at the external film surface 
[1], t is the electronic transmission coefficient 
at the grain boundary [9] and C is a constant 
(C = 4#r [6, 7]). 

The bulk mean free path, 3`o, can be expressed 
from the bulk relaxation time, To [2] as 

3̀ 0 = VF'TO(eF) (7) 

and the energy dependence of 3`o then results from 
the energy dependences of v and 3.0. 

It is assumed that the free electron model is 
valid, i.e. that 

V ~ e 1/2. ( 8 )  

The energy dependence of ro is defined by [4] 

To = rb eq, (9) 

where rb does not depend on e. 
This equation can describe an electronic scat- 

tering due to impurities or frozen-in defects [2]. 
When solving integral equations for Jx and ~ ,  

it is assumed that the electron distribution is 
slightly perturbed, so that the following expansion 
(Equation 10 in [2]) is valid 

1 IIBT 2 a2g(e)] - - fg (e )~de=g(eF)+-~(  ) --~e-Y-f,~=~r, 

for IIBTeZf ,< 1, (10) 

where B is the Boltzmann constant and T is the 
absolute temperature. 

Under the above assumptions, integrating 
Equations 1 and 2 gives 
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and 

and with 

41re2/nA3[ , 1 , aT] 
J~= - -~ - [~ )  [KoEx + ~-~K1 ~--~x J (11) 

4rre/m~~[ , l__K, aT],  
f i x -  m--2~-h--) [ K ' E x + e T  2ax] (12) 

Ko = 2 rue~-§ (13) 

Ki = (IIBT)22[2 ~1/2 %e~ *u2 
3 ~rn/ 

(14) 

K2 = (IIBT)2 Ko, for IIBTeb' ~ 1, 
3 

(15) 

and 

1 
Lo(a) = a - - ~ - + ( 1 - - a 2 ) l n ( 1  + a - ' )  (16) 

La(a) = - - 2 + a  - a + 2 a l n ( 2 + a - x ) .  (17) 

The variables a and b are defined as follows for 
polycrystalline and monocrystalline films (index p 
and m, respectively) [8, 7]: 

ap =bpl (l + C23`oD~l lnl) ,Dg = constant 
(18) 

and 

and 

am = b~a [I +C2XoD~llnll,  Dg>~d (20) 

and 

Since 

a ~'x _ 1 aJ x (22) 
a~:x r a ~ '  

these equations satisfy an essential physical require- 
ment: the Kelvin-Onsager principle. 



The thermal conductivty, ~fe, due to free elec- 
tron transport, is calculated from Equations 11 
and 12 by introducing the general definition [2] 

~" = -- cCfe grad T. (23) 

Further, setting Jx = 0 in Equation 11 then gives 

I]2B2T [4IIe2[~n~ 3 . ] 
l 

for I1BT@ t ,~ 1. (24) 

Since the film conductivity crf, as shown in 
previous papers [6, 7], is given by 

4 IIe2 {m13 
of = --~-~-~} 2 X o e F b - l L o ( a )  (25) 

then 
7r2B 2 T 

~ f e  - -  'Of. ( 2 6 )  3e 2 

3. Physical point of view 
We then conclude that the size effects in thermal 
conductivity and electrical conductivity are 
identical, whatever the value of the average grain 
diameter and whether or not it is constant (poly- 
crystalline films) or equal to the film thickness, or 
larger (monocrystalline films). 

Since the multidimension conduction models 
[6,7] reduce to the Fuchs-Sondheimer conduction 
model [ 1 ] when the effects of grain boundaries are 
negligible [6, 7], Equation 26 is also valid in the 
Fuchs-Sondheimer model. This conclusion is in 
agreement with the results of Verma and Jain who 
studied correlated size effects in electrical and 
thermal conductivities in the Fuchs-Sondheimer 
model, assuming that r o is not energy dependent 
[3]; t h e y  further proposed an approximate 
expression for thermal conductivity [4] when ro 
depends on energy. 

The value of the Wiedemann-Franz ratio, 

~WF,  [2] 

~ P w r -  c~ (27) 
o f T  

is then calculated from Equation 26 

~ -wr  = II2B2/3e2. (28) 

It is seen that ~ w ~  is equal to the standard 
Lorenz number [2]. 

We then conclude that the Lorenz number 
expresses the Wiedemann-Franz ratio when the 
conduction electrons are scattered by phonons, 

grain broundaries, external surfaces and impurities 
or defects. 

These results agree with the general theoretical 
predictions of Ziman [2]; for the validity of this 
calculation it must be assumed that electron scat- 
tering is elastic, so that the Boltzmann equation 
reduces to an integral equation over a single 
constant-energy surface. 

In our opinion, this condition is not clearly 
satisfied in the case of the multidimensional 
conduction models [6-8]  since they are based on 
the definition of a mean free path in the film which 
depends on the fraction of electrons which are 
elastically scattered, which, in turn, is dependent 
on p and t. However, it can be suggested that the 
p- and t-dependent mean free path is a mathemat- 
ical tool which implicitly expresses both the 
boundary conditions at film surfaces and grain 
boundaries and the effects of background and 
impurities scatterings. Cottey [ 10] has shown such 
an equivalence for external-surface scattering but 
the general case has never been treated. 

4. Conclusion 
It is seen from theoretical studies of the thermal 
electronic conductivity in the framework of 
statistical multidimensional conduction models 
[6, 7] that the Wiedemann-Franz law holds in any 
case of  electronic scattering in thin metal films 
at room temperature. 
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